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4.1 INTRODUCTION

This section gives the equations for the acceleration of the spacecraft
relative to the center of integration due to gravity only. These equations include
Newtonian and relativistic acceleration terms. The complete formulation for
program PV, which generates the spacecraft ephemeris and the corresponding
partials file, will eventually be documented by Richard F. Sunseri, the
programmer/analyst for program PV. The relativistic equations of motion are
given in this section so that this document will contain all of the relativistic
equations used in calculating the computed values of observed quantities.

The relativistic equations of motion are given for the Solar-System
barycentric frame of reference and also for the local geocentric frame of
reference. In deriving these equations, transformations of coordinates between
these two relativistic space-time frames of reference are developed. These
relativistic transformations are also used in program Regres.

Section 4.2 gives a general description of the spacecraft ephemeris and the
corresponding partials file, which are used in program Regres. Section 4.3
develops transformations between the coordinates of the local geocentric frame
of reference and the Solar-System barycentric frame of reference. The relativistic
equations of motion for the Solar-System barycentric frame of reference, which
apply for a spacecraft anywhere in the Solar System, are given in Section 4.4.
Section 4.5 gives the corresponding equations for the local geocentric frame of
reference. These equations apply for a spacecraft near the Earth, such as an Earth
orbiter.

The gravitational equations presented are not complete. The changes in
the Earth�s harmonic coefficients due to solid-Earth tides and ocean tides are not
included. The equations of motion presented in this section use the body-fixed to
space-fixed rotation matrices for the various celestial bodies of the Solar System.
The rotation matrix used for the Earth is given in Section 5.3. The matrix used for
all of the other bodies of the Solar System is given in Section 6.3.
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4.2 GENERAL DESCRIPTION OF PROGRAM PV

The spacecraft acceleration relative to the center of integration (COI) is
integrated numerically to produce the spacecraft ephemeris. This ephemeris can
be represented in the Solar-System barycentric frame of reference for a
spacecraft anywhere in the Solar System or in the local geocentric frame of
reference for a spacecraft near the Earth. Interpolation of the spacecraft
ephemeris for either of these two space-time frames of reference gives the space-
fixed position, velocity, and acceleration vectors of the spacecraft relative to the
center of integration in km, km/s, and km/s2. The ephemeris is interpolated at
the ET value of the interpolation epoch (coordinate time in the Solar-System
barycentric or local geocentric frame of reference). The space-fixed reference
frame for the spacecraft ephemeris is the reference frame of the planetary
ephemeris used to generate the spacecraft ephemeris.

The COI for the spacecraft ephemeris can be the center of mass of the Sun
(S), Mercury (Me), Venus (V), Earth (E), the Moon (M), an asteroid or a comet,
the center of mass of the planetary systems Mars (Ma), Jupiter (J), Saturn (Sa),
Uranus (U), Neptune (N), or Pluto (Pl), or the planet or a satellite of any of these
outer planet systems. The current COI is determined by the spheres of influence
centered on each of these points (except the Sun). If the spacecraft is within the
sphere of influence of a body or planetary system, the COI is the center of mass
of that body or planetary system. Otherwise, the COI is the Sun. The radii of the
spheres of influence are parameters on the GIN file, and hence can be varied by
the ODP user. Note that the sphere of influence for the Moon is contained within
the sphere of influence for the Earth.

The variational equations calculate the partial derivatives of the spacecraft
acceleration vector with respect to the parameter vector q (consisting of solve-
for and consider parameters). These partial derivatives are numerically
integrated to produce the spacecraft partials file. Interpolation of the spacecraft
partials file with an ET epoch produces the partial derivatives of the position,
velocity, and acceleration vectors of the spacecraft relative to the COI with
respect to q.
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4.3 TRANSFORMATIONS BETWEEN COORDINATES OF
THE LOCAL GEOCENTRIC FRAME OF REFERENCE
AND THE SOLAR-SYSTEM BARYCENTRIC FRAME OF
REFERENCE

Section 4.3.1 gives the equation for transforming Earth-centered space-
fixed position coordinates of an Earth-fixed tracking station or a near-Earth
spacecraft from the local geocentric to the Solar-System barycentric space-time
frame of reference. Section 4.3.2 gives the equation relating the differential of
coordinate time in the local geocentric frame of reference to the differential of
coordinate time in the Solar-System barycentric frame of reference. Section 4.3.3
shows how the expression for coordinate time in the Solar-System barycentric
frame of reference minus coordinate time in the local geocentric frame of
reference can be obtained from equations in Section 2. Section 4.3.4 gives the
equation relating the values of the gravitational constant µ of a celestial body in
the local geocentric and Solar-System barycentric frames of reference.

4.3.1 POSITION COORDINATES

4.3.1.1 Derivation of Transformation

The Lorentz transformation given by Eqs. (7a) and (7b) of Hellings (1986)
transforms space and time coordinates of the Solar-System barycentric space-
time frame of reference to space and time coordinates of the local geocentric
frame of reference. The barycentric coordinates are those of a flat space-time
which is tangent to the curved space-time of the barycentric frame at the location
of the Earth. The geocentric coordinates are those of a flat space-time which is
tangent to the curved space-time of the local geocentric frame a large distance
from the Earth. Let the space and time coordinates in these two flat space-time
frames of reference be denoted by:

    ′ ′r rBC GC,  = space-fixed geocentric position vectors of tracking station
or near-Earth spacecraft expressed in the space
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coordinates of the flat Solar-System barycentric (BC) and
geocentric (GC) frames of reference, respectively.

    ′ ′t tBC GC,  = coordinate times in the flat Solar-System barycentric and
geocentric frames of reference, respectively.

Also, let

VE = space-fixed velocity vector of Earth relative to Solar-
System barycenter.

VE = magnitude of VE

The Lorentz transformation given by Eqs. (7a) and (7b) of Hellings (1986) is:

      
dt

V
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which contains terms to order 1/c2. Note that if VE is along the x axis, these
equations reduce to the usual text-book Lorentz transformation to order 1/c2.

The metric (the expression for the square of the interval ds) in the Solar-
System barycentric space-time frame of reference is given by Eqs. (2�16) to
(2�18), where the constant L in the scale factor l is defined by Eq. (2�22) evaluated
at mean sea level on Earth. The barycentric coordinates       ′ ′tBC BCand r , which are
flat (Minkowskian) in a local region near Earth, are related to the global
coordinates of the barycentric metric (2�16) by what Hellings (1986) refers to as
an infinitesimal transformation:
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where UE is the gravitational potential U given by Eq. (2�17) at the Earth due to
all other bodies.

The metric in the local geocentric space-time frame of reference is also
given by Eqs. (2�16) to (2�18) and (2�22). However, the gravitational potential U
in (2�16) and (2�22) only contains the term of (2�17) due to the Earth. The
velocity v in (2�22) changes from the Solar-System barycentric velocity to the
geocentric velocity. The constant LGC in the scale factor lGC (where GC refers to
the value in the local geocentric frame of reference) is obtained by evaluating
(2�22) at mean sea level on Earth. The transformation from the coordinates

      ′ ′tGC GC and r  of the flat space-time (which is tangent to the curved space-time of
the local geocentric frame a large distance from the Earth) to the coordinates of
the local geocentric metric is obtained from the geocentric metric with the
gravitational potential U due to the Earth deleted:

    dt L dt′ = +( )GC GC GC1 (4�5)

      ′ = +( )r rGC GC GC1 L (4�6)

Let the constant L in the barycentric frame minus the constant LGC in the
local geocentric frame be denoted as     �L :

    
�L L L= − GC (4�7)

Substituting Eqs. (4�3) and (4�4) into the right-hand side of Eqs. (4�1) and
(4�2) and substituting (4�5) and (4�6) into the left-hand side and using
Eq. (4�7) gives the modified Lorentz transformation which transforms the space
and time coordinates of the Solar-System barycentric metric to those of the local
geocentric metric:

      
dt

V

c
L

U

c
dt

c
L

U

c
GC

E E
2 BC

E
2 E BC= +







+ −





− + +





⋅








1

2
1

1
1

2

2 2
� � γ

V r (4�8)



SECTION  4

4�8

      

r r V r V

V

GC
E

BC
E

E BC E

E E
E BC

= + +





+ + +





⋅( )

− + −





+







1
1

2
1

1 1
2

2 2 2

2

2

2

� �

�

L
U

c c
L

U

c

L
U

c

V

c
dt

γ γ

(4�9)

For the next step, we need an expression relating the geocentric space-
fixed position vectors of an Earth-fixed tracking station or a near-Earth spacecraft
in the local geocentric and Solar-System barycentric space-time frames of
reference. Furthermore, the two ends of the position vector in the barycentric
frame should be observed simultaneously in coordinate time in that frame. The
desired relation is obtained from (4�9) by setting dtBC = 0 and solving for rBC.
Retaining terms to order 1/c2 gives:
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The inverse transformation, which applies for the condition that dtBC = 0, is:
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Section 4.3.1.2 will develop expressions for L, LGC, and their difference     �L  (see
Eq. 4�7) and obtain numerical values for these three constants. The gravitational
potential UE at the Earth can be calculated from Eq. (2�17) where i = E (Earth).
The position vectors of the major bodies of the Solar System relative to the Earth
are obtained by interpolating the planetary ephemeris as described in Section
3.1.2.1. The magnitudes of these vectors equal rij = rEj in the denominator of
Eq. (2�17). The gravitational constants µj of the major bodies of the Solar System
in the numerator of Eq. (2�17) are obtained from the planetary ephemeris as
described in Section 3.1.2.2. When the planetary ephemeris is interpolated, the
velocity vector VE of the Earth relative to the Solar-System barycenter is also
obtained as described in Section 3.1.2.1.



SPACECRAFT  EPHEMERIS

4�9

The derivation of Eqs. (4�10) and (4�11) is a minor variation of a similar
derivation in Hellings (1986). The changes to the derivation were suggested by
R. W. Hellings. Eq. (4�10) is the same as Eq. (46) of Huang, Ries, Tapley, and
Watkins (1990), which will be referred to as HRTW (1990), if the two terms of
(46) containing the acceleration of the Earth are ignored. Ignoring these two
terms in (4�10) and (4�11) produces an error in the transformed space-fixed
position vector of an Earth-fixed tracking station of less than 0.01 mm.

Tracking station coordinates and position coordinates of near-Earth
spacecraft ephemerides integrated in the local geocentric frame of reference are
expressed in the space coordinates of the local geocentric space-time frame of
reference. Eq. (4�10) and will be used to transform the geocentric space-fixed
position vector of an Earth-fixed tracking station from the local geocentric space-
time frame of reference in which it is computed (Section 5) to the Solar-System
barycentric space-time frame of reference. The transformed position vector will
be used in the Solar-System barycentric light-time solution (Section 8). Eqs. (4�10)
and (4�11) will be used in Section 4.4.5 to calculate the acceleration of a near-
Earth spacecraft due to the Earth�s harmonic coefficients in the Solar-System
barycentric frame of reference.

In transforming the geocentric space-fixed position vector of a fixed
tracking station on Earth from the local geocentric frame of reference to the
Solar-System barycentric frame of reference using Eq. (4�10), the first term of
this equation reduces the geocentric radius of the tracking station by about
16 cm. This term accounts for the different scale factors used in the two frames of
reference and the effect of the gravitational potential on measured space
coordinates near the Earth in the barycentric frame. The second term of
Eq. (4�10) reduces the component of the station position vector along the Earth�s
velocity vector by up to 3 cm. The diameter of the Earth in the direction of the
Earth�s velocity is reduced by about 6 cm as viewed in the Solar-System
barycentric space-time frame of reference. This effect is due to the different
definitions of simultaneity in the two frames of reference, which have a relative
velocity of about 30 km/s. The second term of Eq. (4�10) is the Lorentz
contraction.
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4.3.1.2 Expressions for Scale Factors

The metric (Eq. 2�16) contains the scale factor l given by Eq. (2�18). The
constant L in (2�18) is the departure of l from unity. The constant L is defined by
Eq. (2�22). The values of L that apply in the Solar-System barycentric frame (L)
and the local geocentric frame (LGC) are evaluated from Eq. (2�22) as described in
Sections 2.3.1.2 and 2.3.1.3, respectively. From Eq. (4�7), the constant     �L  is L

minus LGC. This section will give equations and numerical values for L, LGC, and

    �L .

To sufficient accuracy, the numerical value of the constant L, which applies
in the Solar-System barycentric space-time frame of reference, can be calculated
from:

    

L
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(4�12)

The number of significant digits given for the parameters in Eq. (4�12) is
sufficient to calculate L to seven significant digits. The gravitational constants µ
for the Sun (S), Mercury (Me), Venus (V), and the  planetary systems Mars (Ma),
Jupiter (J), Saturn (Sa), Uranus (U), Neptune (N), and Pluto (Pl), the planetary
ephemeris scaling factor AU (which is the number of kilometers per
astronomical unit), and the speed of light c were obtained from Standish et al.

(1995):

µS = 132,712,440,018. km3/s2

µMe = 22,032. km3/s2

µV = 324,859. km3/s2

µMa = 42,828. km3/s2

µJ = 126,712,768. km3/s2

µSa = 37,940,626. km3/s2

µU = 5,794,549. km3/s2
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µN = 6,836,534. km3/s2

µPl = 982. km3/s2

AU = 149,597,870.691 km/astronomical unit
c = 299,792.458 km/s

The semi-major axes (a) in astronomical units of the heliocentric orbits of the
Earth-Moon barycenter (B) and the planetary systems Mars through Pluto were
obtained from Table 5.8.1 on page 316 of the Explanatory Supplement (1992). To
sufficient accuracy, the values at the epoch J2000.0 can be used:

aB = 1.000,000,11
aMa = 1.523,66

aJ = 5.203,36
aSa = 9.537
aU = 19.191
aN = 30.069
aPl = 39.482

From Standish et al. (1995) or Chapter 1 of International Earth Rotation Service
(1992), the gravitational constant for the Moon is given by:

µM = 4902.8 km3/s2

From Table 15.4 on page 701 of the Explanatory Supplement (1992), the semi-
major axis of the geocentric orbit of the Moon in kilometers is given to sufficient
accuracy by:

aM = 3.844 x 105 km

From Chapter 1 or Chapter 6 of International Earth Rotation Service (1992), or
from Standish et al. (1995), values of the gravitational constant of the Earth (µE),
the mean equatorial radius of the Earth (ae), and the second zonal harmonic
coefficient of the Earth (J2), rounded to more than enough significant digits to
calculate L to seven significant digits are given by:
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µE = 398,600.44 km3/s2

ae = 6378.136 km
J2 = 1.082,63 x 10−3

It will be seen in Section 4.3.4 that the gravitational constant of the Earth has
slightly different values in the Solar-System barycentric and geocentric frames of
reference. However, the difference of about 0.006 km3/s2 is not significant here.
From Table 15.4 on page 701 of the Explanatory Supplement (1992), the inertial
rotation rate of the Earth (ωE) is given by:

ωE = 0.729,2115 x 10−4 rad/s

Substituting numerical values into Eq. (4�12) and rounding the resulting value of
L to seven significant digits gives:

    L = 1 550 520. ,  x 10-8 (4�13)

Secular variations in the semi-major axes of the orbits of the planets prevent the
calculation of L from Eq. (4�12) to more than seven significant digits.

Of the five terms of Eq. (4�12), only the third and fifth terms apply for LGC

in the local geocentric space-time frame of reference:
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Substituting numerical values into Eq. (4�14) and rounding the resulting value of
LGC to 1 x 10−14 (as in 4�13) gives:

    LGC
-8 x 10= 0 069 693. , (4�15)

From Eq. (4�7), the expression for     �L  is given by Eq. (4�12) minus
Eq. (4�14), which is given by terms one, two, and four of (4�12):
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Substituting numerical values into Eq. (4�16) and rounding the resulting value of

    �L  to seven significant digits gives:

    � . ,L = 1 480 827 x 10-8 (4�17)

The same value is obtained by subtracting Eq. (4�15) from Eq. (4�13), according
to Eq. (4�7).

Fukushima (1995) has obtained numerical values for L, LGC, and     �L , which
he denotes as LB, LG, and LC, respectively, by numerical integration. His values
of these constants (given in his equations (41), (40), and (38)) contain three to
four more significant digits than given here and round to the values given in Eqs.
(4�13), (4�15), and (4�17).

The numerical values of L and LGC  will be used in Sections 11 and 13 to
calculate the computed values of one-way doppler (F1) observables in the Solar-
System barycentric and local geocentric frames of reference, respectively. The
numerical value of     �L  is used in Eqs. (4�10) and (4�11) and throughout Section 4.3.

4.3.2 DIFFERENTIAL EQUATION FOR TIME COORDINATES

In order to calculate the acceleration of a near-Earth spacecraft due to the
Earth�s harmonic coefficients in the Solar-System barycentric frame of reference
(in Section 4.4.5), an expression is required for dtGC/dtBC evaluated at the
spacecraft. An interval of proper time dτ recorded on an atomic clock carried by
the spacecraft divided by the corresponding interval of coordinate time dtBC in
the Solar-System barycentric frame of reference is given by Eq. (2�20):

    

d
dt

U

c

v

c
L

τ
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= − − +1

22

2

2 (4�18)
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where U is the gravitational potential at the spacecraft given by Eq. (2�17), v is
the Solar-System barycentric velocity of the spacecraft given by Eq. (2�21), and L
is given by Eq. (4�13). The interval dτ divided by the corresponding interval of
coordinate time dtGC in the local geocentric frame of reference is given by:

    

d
dt

U

c

v

c
L

τ

GC

GC
GC

E
= −

( )
− +1

22

2

2 (4�19)

where U(E) is the gravitational potential at the spacecraft due to the Earth, vGC is
the geocentric velocity of the spacecraft, and LGC is given by Eq. (4�15). If the
spacecraft atomic clock were placed at mean sea level on Earth, it would run at
the same rate as International Atomic Time TAI. The TAI rate is the same as the
rate of coordinate time in the local geocentric frame of reference. The average
rate of TAI is the same as the rate of coordinate time in the Solar-System
barycentric frame of reference.

If the gradient of the gravitational potential UE at the Earth due to all
other bodies is ignored, the gravitational potential U at a near-Earth spacecraft
can be approximated by:

    U U U≈ + ( )E E (4�20)

Also, v2 in Eq. (4�18) can be expressed as:

      v V v2 2 22= + ⋅ +E E GCV rú (4�21)

where     úr  is the geocentric space-fixed velocity vector of the near-Earth spacecraft.
Dividing Eq. (4�18) by Eq. (4�19), substituting Eqs. (4�20), (4�21), and (4�7), and
retaining terms to order 1/c2 gives:

      

dt
dt

U V

c
L

c
GC

BC

E
2

E E

c
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2

2

2 2
� úV r
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Since terms of order 1/c4 are ignored,     úr  can be evaluated in the local geocentric
frame of reference or in the Solar-System barycentric frame of reference. The
inverse of Eq. (4�22) is Eq. (47) of HRTW (1990), except that I have ignored the
term

      
−

⋅úV rE

c2

in Eq. (4�22) which arises from the gradient of UE.

Eq. (4�22) gives the rate of dtGC relative to dtBC at a point in the local
geocentric frame of reference that has a geocentric space-fixed velocity vector of

    úr . The first four terms on the right-hand side of Eq. (4�22) represent periodic
variations in the rate of geocentric coordinate time with variations in the
gravitational potential at the Earth and the Solar-System barycentric velocity of
the Earth. The last term on the right-hand side of (4�22) plus the neglected term
is the negative of the time derivative of the clock synchronization term in the
expression for ET − TAI at an Earth satellite. This is the fourth term on the right-
hand side of Eq. (2�23), which is used in Eq. (2�25).

4.3.3 TIME COORDINATES

Eq. (4�22), plus the neglected term listed after it, can be integrated to give
an expression for coordinate time tBC in the barycentric frame of reference minus
coordinate time tGC in the local geocentric frame of reference. However, this
derivation is the same as that for Eq. (2�23) for ET − TAI at a tracking station on
Earth. In this equation, ET is coordinate time in the Solar-System barycentric
frame of reference and TAI is International Atomic Time obtained from an
atomic clock at the tracking station. From Eq. (2�30), TAI plus 32.184 s is
coordinate time in the local geocentric frame of reference. Hence, the desired
expression for tBC minus tGC is the right-hand side of Eq. (2�23) with the constant
32.184 s deleted. In this expression,     rA

E  is the geocentric space-fixed position
vector of the point A where the time difference tBC − tGC is desired. The term



SECTION  4

4�16

containing     rA
E  is the time synchronization term, which comes from the Lorentz

transformation, and the remaining terms are periodic.

4.3.4 GRAVITATIONAL CONSTANTS

The gravitational constant of a body (defined after Eq. 2�6) has units of
km3/s2. The �physical� or �measured� or �proper� gravitational constant of a
body is measured in the scaled space and time coordinates of the underlying
metric. Eq. (2�16) for the metric in the Solar-System barycentric or local
geocentric frame of reference shows the space and time coordinates multiplied
by the scale factor l given by Eq. (2�18). The equations of motion for bodies and
light are independent of the scale factor l. The gravitational constants used in the
equations of motion are expressed in the unscaled space and time coordinates of
the underlying metric. Since the physical gravitational constant contains three
scaled coordinates in the numerator and two scaled coordinates in the
denominator, it is equal to the unscaled gravitational constant used in the
equations of motion multiplied by the scale factor l. The unscaled gravitational
constants µBC and µGC of a body used in the equations of motion in the Solar-
System barycentric and local geocentric frames of reference, respectively, are
given by the following functions of the common physical gravitational constant
of the body:

    
µ

µ
BC

physical=
+1 L

(4�23)

    
µ

µ
GC

physical

GC1+
=

L
(4�24)

The gravitational constants µBC of the celestial bodies of the Solar System are
estimated in fitting the planetary ephemeris to the observations of the Solar-
System bodies. The corresponding gravitational constants in the local geocentric
frame of reference are obtained from Eqs. (4�23) and (4�24) by eliminating
µphysical, using Eq. (4�7), and retaining terms to order 1/c2:
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µ µGC BC= +( )1 �L (4�25)

where     �L  is given by Eq. (4�17). In practice, the only gravitational constant whose
value must be transformed from its value in the barycentric frame to its value in
the local geocentric frame is the gravitational constant of the Earth.

Eq. (4�23) is the same as Eq. (5) or (15) of Misner (1982) and the same to
order 1/c2 as Eqs. (21), (23), and (25) of Hellings (1986). Eq. (4�25) is the same to
order 1/c2 as Eq. (62) of HRTW (1990).

The gravitational constants µBC of the bodies of the Solar System obtained
from the planetary ephemeris and from satellite ephemerides are described in
Sections 3.1.2.2 and 3.2.2.1.

4.4 RELATIVISTIC EQUATIONS OF MOTION IN SOLAR-
SYSTEM BARYCENTRIC FRAME OF REFERENCE

This section specifies the equations for calculating the acceleration of a
spacecraft located anywhere in the Solar System relative to the center of
integration (see Section 4.2) due to gravity only. This acceleration is calculated in
the Solar-System barycentric space-time frame of reference as the acceleration of
the spacecraft relative to the Solar-System barycenter minus the acceleration of
the center of integration relative to the Solar-System barycenter. Section 4.4.1
specifies the point-mass Newtonian acceleration plus the relativistic perturbative
acceleration due to a body. These equations are used to calculate the acceleration
of the spacecraft and the acceleration of the center of integration due to the
celestial bodies of the Solar System. The acceleration of a near-Earth spacecraft is
affected by geodesic precession, as discussed in Section 4.4.2. The acceleration
due to geodesic precession is included in the relativistic point-mass perturbative
acceleration specified in Section 4.4.1. The Lense-Thirring relativistic acceleration
of a near-Earth spacecraft due to the rotation of the Earth is given in Section
4.4.3. The standard model for calculating the acceleration of a spacecraft due to
the harmonic coefficients of a nearby celestial body is discussed in Section 4.4.4.
This model uses the formulation in Moyer (1971) and calculates the Newtonian
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acceleration due to the oblateness of a celestial body in the rest frame of the
body. Section 4.4.5 gives a more accurate model for calculating the acceleration
of a near-Earth spacecraft due to the harmonic coefficients of the Earth in the
Solar-System barycentric frame of reference. Section 4.4.6 gives the formulation
for calculating the acceleration of the Earth or Moon (when one of these bodies is
the center of integration) due to the oblateness of the Earth and the Moon. This
model is also used to calculate the acceleration of the planet or a satellite of one
of the outer planet systems due to oblateness when one of these bodies is the
center of integration.

The Solar System contains eleven major bodies: the nine planets, the Sun,
and the Moon. The input array PERB for program GIN contains an element for
each of these bodies, which can be 0, 1, 2, or 3. The value of 3 can only be used
for the Earth. The value of the element of the PERB array for a body determines
which terms of the acceleration of the spacecraft due to the body and the
acceleration of the center of integration due to the body are computed. For a 0,
no acceleration terms due to the body are computed. For a 1, the Newtonian
acceleration terms due to the body are calculated. For a 2, the Newtonian and
relativistic perturbative acceleration terms are calculated. For the Earth, a value
of 3 gives these terms plus the acceleration due to geodesic precession, and the
Lense-Thirring precession if the spacecraft is within the Earth�s sphere of
influence. Furthermore, if the spacecraft is within the Earth�s oblateness sphere,
the acceleration of the spacecraft due to the Earth�s harmonic coefficients is
calculated in the Solar-System barycentric frame of reference (i.e., from the
formulation of Section 4.4.5 instead of Section 4.4.4). The Newtonian acceleration
terms due to asteroids and comets on the small-body ephemeris are calculated if
the body number is placed into input array XBNUM, the body name is placed
into input array XBNAM, and either is placed into input array XBPERB. All three
of these inputs are for program GIN.

For a near-Earth spacecraft, all acceleration terms that are of order 10−12

or greater relative to the Newtonian acceleration of the spacecraft due to the
Earth are retained.
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4.4.1 POINT-MASS NEWTONIAN AND RELATIVISTIC PERTURBATIVE

ACCELERATIONS

The point-mass Newtonian acceleration plus the point-mass relativistic
perturbative acceleration of body i due to each other body j of the Solar System
is given by Eq. (54) of Moyer (1971). The ODP contains the PPN (Parameterized
Post�Newtonian) parameters β and γ of Will and Nordtvedt (1972). However,
Eq. (54) of Moyer (1971) only contains the parameter γ. Eq. (54) can be
parameterized with β and γ  by comparing the terms of (54) to the
corresponding terms of Eq. (6.78) of Will (1981). Will�s equation is parameterized
with β and γ, which are unity in general relativity, and α  1, α  2, and ξ, which are
zero in general relativity. Setting these small parameters to zero in Eq. (6.78) of
Will (1981) and comparing the remaining terms to Eq. (54) of Moyer (1971) gives
the β and γ parameterized version of Eq. (54) of Moyer (1971):
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where the notation is defined after Eq. (2�6) and by Eqs. (2�7) to (2�9). The space-
fixed position, velocity, and acceleration vectors of points i, j, k, and l are referred
to the Solar-System barycenter. The rectangular components of these vectors are
referred to the space-fixed coordinate system of the planetary ephemeris. The
dots denote differentiation with respect to coordinate time of the Solar-System
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barycentric frame of reference. The gravitational constants of the Sun, Mercury,
Venus, the Earth, the Moon, and the planetary systems Mars through Pluto are
the values associated with the Solar-System barycentric frame of reference, and
they are obtained from the planetary ephemeris. If a satellite ephemeris is used
for a planetary system, the gravitational constant for the planetary system
obtained from the satellite ephemeris will overstore the value from the planetary
ephemeris in the ODP. The gravitational constants of asteroids and comets are
obtained from the small-body ephemeris.

The first term of Eq. (4�26) is the point-mass Newtonian acceleration of
body i:

      

úúr
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=
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∑
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3 (4�27)

The remaining terms of Eq. (4�26) are the point-mass relativistic perturbative
acceleration of body i. The acceleration of the spacecraft (point i) relative to the
Solar-System barycenter due to the Sun, Mercury, Venus, the Earth, the Moon,
the barycenters of the planetary systems Mars through Pluto, and asteroids and
comets is calculated from Eq. (4�26). However, the terms included in the
calculation are controlled by the arrays PERB and XBPERB. If the element of the
PERB array for a perturbing body j in (4�26) is 1, the acceleration of the
spacecraft due to that body is calculated from Eq. (4�27). If PERB is 2 or 3, the
acceleration of the spacecraft due to body j is calculated from Eq. (4�26). If PERB
is 0, the acceleration of the spacecraft due to body j is not calculated. The
acceleration of the spacecraft due to each asteroid and comet included in the
XBPERB array is calculated from Eq. (4�27). The acceleration of the center of
integration (if it is the Sun, Mercury, Venus, the Earth, the Moon, the barycenter
of one of the planetary systems Mars through Pluto, an asteroid, or a comet)
relative to the Solar-System barycenter is also calculated from Eq. (4�26) using
the PERB and XBPERB arrays as described above. The perturbing bodies for the
center of integration are the same as those for the spacecraft except that the
center of integration is excluded. The acceleration of the spacecraft relative to the
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center of integration is the acceleration of the spacecraft minus the acceleration of
the center of integration.

Evaluation of the relativistic perturbative acceleration terms of Eq. (4�26)
requires the acceleration (      

úúrj ) of body j in two places. Since terms of order 1/c4

are ignored, the Newtonian acceleration given by Eq. (4�27) or Eq. (2�12) can be
used. Calculation of the relativistic perturbative acceleration of body i due to
perturbing body j using Eq. (4�26) requires the just-mentioned Newtonian
acceleration of body j, the gravitational potential at body j, and the gravitational
potential at body i. The contribution to these gravitational potentials and
accelerations due to the mass of a Solar-System body will not be computed if the
element of the PERB array for that body is zero or the body (if it is an asteroid or
a comet) is not included in the XBPERB array. Note that the mass of body i

contributes to the Newtonian acceleration of each perturbing body j and the
gravitational potential at each perturbing body j.

If the spacecraft is outside the sphere of influence of a planetary system
(Mars, Jupiter, Saturn, Uranus, Neptune, or Pluto), the acceleration of the
spacecraft due to that planetary system is calculated from the gravitational
constant of the planetary system located at the barycenter of the planetary
system (obtained from the planetary ephemeris). However, if the spacecraft is
inside the sphere of influence of a planetary system and a satellite ephemeris for
that planetary system is used, then the acceleration of the spacecraft due to each
satellite and the planet of the planetary system is calculated. The gravitational
constants of each of these bodies and their positions relative to the barycenter of
the planetary system are obtained from the satellite ephemeris as described in
Section 3.2.2.1. If the element of the PERB array for the planetary system is 1, the
acceleration of the spacecraft due to each body of the planetary system is
Newtonian (i.e., calculated from Eq. 4�27). If the element of the PERB array is 2,
these acceleration terms are relativistic (i.e., calculated from Eq. 4�26).

If the center of integration (COI) for the spacecraft ephemeris is the planet
or a satellite of one of the outer planet systems, the acceleration of the COI due
to the distant bodies of the Solar System is calculated from Eq. (4�26) as
described above, except that the position of the planet or satellite which is the
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COI is used instead of the position of the barycenter of the planetary system. The
acceleration of the COI due to each of the other bodies of the planetary system is
calculated from Eq. (4�26) if PERB for the planetary system is 2 and from
Eq. (4�27) if PERB for the planetary system is 1.

The remainder of this section will show how the n-body point-mass
relativistic equations of motion (Eq. 4�26) can be derived from the n-body point-
mass metric tensor and related equations (Eqs. 2�1 to 2�15). The trajectory of a
massless particle or a celestial body in the gravitational field of n other celestial
bodies is a geodesic curve which extremizes the integral of the interval ds

between two points:

    
δ ds =∫ 0 (4�28)

Special conditions for treating the mass of body i whose motion is desired will be
given below. In order to obtain the equations of motion with coordinate time t
of the Solar-System barycentric frame of reference as the independent variable,
Eq. (4�28) is written as

    
δ L dt =∫ 0 (4�29)

where the Lagrangian L is given by:

  
L

ds
dt

= (4�30)

An expression for L2 is obtained from Eq. (2�15) for ds2 by replacing differentials
of the space coordinates of body i by derivatives of the space coordinates with
respect to coordinate time t multiplied by dt, and then dividing the resulting
equation by dt2. The Lagrangian L could be obtained by expanding the square
root of L2 in powers of 1/c2. Given L, the equations of motion that extremize the
integral (4�29) are the Euler-Lagrange equations:
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where
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i= → (4�32)

A simpler procedure for obtaining the equations of motion directly from
derivatives of L2 is developed as follows. The Euler-Lagrange equations are
unchanged by multiplying both terms by L:
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Differentiating     L L xi∂ ∂ ú( ) with respect to t gives:
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where

    
úL

dL
dt

= (4�35)

The equations of motion are obtained by substituting the last term of Eq. (4�34)
into (4�33):
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The derivatives   L L xi∂ ∂( ) and     L L xi∂ ∂ ú( ) are obtained by differentiation of the
expression for L2. Because the equations of motion contain terms to order 1/c2

only,
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where L2 has been replaced by its leading term c2 and     LLú  is obtained by
differentiating a simplified expression for L2 containing terms to order 1/c0 only.
The required expression for L2 is obtained from Eq. (2�15) as described above:
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where the components of the n-body metric tensor are obtained from Eqs. (2�1)
to (2�6) and Eq. (2�11). The n-body point-mass relativistic equations of motion
(Eq. 4�26) can be derived by evaluating Eq. (4�36) using Eqs. (4�37) and (4�38).
However, in evaluating the partial derivatives of Eq. (4�38) with respect to the
position components of body i, the gravitational potential at each perturbing
body j and the Newtonian acceleration of each perturbing body j must be
considered to be functions of coordinate time t only. These functions must not be
differentiated with respect to the position components of body i. These special
conditions were pointed out to me by Dr. Frank B. Estabrook and Dr. Hugo
Wahlquist of the Jet Propulsion Laboratory. This particular derivation of
Eq. (4�26), for the case where β = 1, is given in Section II of Appendix A of Moyer
(1971).

4.4.2 GEODESIC PRECESSION

Geodesic precession is due to the motion of the Earth through the Sun�s
gravitational field. It causes the pole of the orbit of an Earth satellite to precess
about the normal to the ecliptic at the rate of 19.2″ x 10−3/year. This causes the
ascending node of the orbit of an Earth satellite on the ecliptic to increase in
celestial longitude by 19.2 mas/year. This same effect decreases the general
precession in longitude by the same amount (see Explanatory Supplement (1961),
p. 170).
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In the Solar-System barycentric space-time frame of reference, the
geocentric acceleration of a near-Earth spacecraft due to geodesic precession is
included in the point-mass relativistic perturbative acceleration of the spacecraft
calculated from Eq. (4�26) minus the point-mass relativistic perturbative
acceleration of the Earth calculated from the same equation (see Dickey,
Newhall, and Williams (1989) and HRTW (1990)). When the geocentric
acceleration of a near-Earth spacecraft is calculated in the local geocentric space-
time frame of reference, a separate equation is required for calculating the
acceleration due to geodesic precession (Section 4.5.3).

4.4.3 LENSE-THIRRING PRECESSION

The unit vector S in the direction of the north pole of the orbit of an Earth
satellite undergoes the general relativistic Lense-Thirring precession due to the
rotation of the Earth. The unit vector S precesses at the rate:

    

d
dt
S

S= ×ΩΩ (4�39)

where Ω is the Lense-Thirring angular velocity vector. From Will (1981), Eq. (9.5),
term 2,
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where

G = constant of gravitation
=   6 67259 10 20. × −  km /s kg3 2

r = space-fixed geocentric position vector of near-Earth
spacecraft, km

r = magnitude of r
J = angular momentum vector of the Earth
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Eq. (4�40) with γ equal to its general relativistic value of unity is also given in
Misner, Thorne, and Wheeler (1973), Eq. (40.37) (with ∆1 = ∆2 = 1, their general
relativistic values). The angular momentum vector of the Earth is given by:

      
J P= ( )0 33068 2. m aE e E

2kg km
s

ω (4�41)

where ae and ωE are defined after Eq. (4�12) and:

mE = mass of the Earth, kg
P = unit vector aligned with the Earth�s spin axis and directed

toward the north pole

The constant 0.33068 in Eq. (4�41) is the polar moment of inertia C of the Earth
divided by mE ae

2. It was computed by J. G. Williams of the Jet Propulsion
Laboratory as J2 (definition and numerical value given after Eq. 4�12) which is
equal to (C − A)/mE ae

2 (see Kaula (1968), p. 68, Eq. 2.1.32), where A is the
equatorial moment of inertia of the Earth, divided by (C − A)/C = 0.0032739935
(see Seidelmann (1982), p. 96, parameter H).

The angular velocity vector Ω given by Eq. (4�40) is the local rotation rate
of the inertial geocentric frame of reference relative to a non-rotating geocentric
frame. The equations of motion in a non-rotating geocentric frame are those of a
coordinate system rotating with the angular velocity − Ω. So, to the equations of
motion in a non-rotating geocentric frame of reference , we must add the
Coriolis acceleration     − ×2ωω úr , where ω is the angular velocity − Ω and     úr  is the
geocentric space-fixed velocity vector of the near-Earth spacecraft. Thus, in the
non-rotating local geocentric space-time frame of reference or the Solar-System
barycentric space-time frame of reference, the acceleration of a near-Earth
spacecraft due to the Lense-Thirring precession is given by:

    úú úr r= ×2ΩΩ (4�42)

The ratio of this acceleration to the Newtonian acceleration of an Earth satellite is
a maximum for a very near Earth satellite. The angular rate ΩΩ  is about 2 x 10−14
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rad/s for the TOPEX satellite (semi-major axis = 7712 km). The corresponding
acceleration computed from Eq. (4�42) is about 3 x 10−13 km/s2. Since the
Newtonian acceleration of the TOPEX satellite is about 0.7 x 10−2 km/s2, the
Lense-Thirring acceleration is approximately 4 x 10−11 times the Newtonian
acceleration. In the non-rotating geocentric frame, we should also add the
centrifugal acceleration − Ω × Ω × r. However, this acceleration is a maximum of
about 10−21 times the Newtonian acceleration, which can safely be ignored.

Substituting Eq. (4�41) into Eq. (4�40) and substituting the result into
Eq. (4�42) and using

µE = GmE

= gravitational constant of the Earth, km3/s2

as defined after Eq. (2�6) gives:
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In order to calculate the Lense-Thirring acceleration from Eq. (4�43), an
expression is required for the pole vector P in the space-fixed coordinate system
of the planetary ephemeris (see Section 3.1.1). It could be calculated from
polynomials for the right ascension and declination of the Earth�s mean north
pole of date. However, the following simpler algorithm was suggested by J.G.
Williams. In the Earth-fixed coordinate system aligned with the true pole, prime
meridian, and equator of date,
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In the space-fixed coordinate system of the planetary ephemeris, P is given by:
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where TE is the 3 x 3 rotation matrix from Earth-fixed coordinates referred to the
true pole, prime meridian, and equator of date to the space-fixed coordinate
system of the planetary ephemeris. The algorithm for calculating the
transformation matrix TE for the Earth is given in Section 5.3. Rather than
formally calculating the space-fixed pole vector P from Eq. (4�45), it is given
simply by the third column of TE.

Eq. (4�43) with γ = 1 (general relativity) and expressed in terms of J given
by Eq. (4�41) or J/mE instead of P is given by Eq. (9.5.19) on p. 232 of Weinberg
(1972) and Eq. (41) of HRTW (1990), respectively.

4.4.4 NEWTONIAN ACCELERATION OF SPACECRAFT DUE TO THE

HARMONIC COEFFICIENTS OF A CELESTIAL BODY

This section presents the model for the Newtonian acceleration of the
spacecraft due to the oblateness of a nearby celestial body. This acceleration is
only calculated if the spacecraft is within the oblateness sphere of the body.
Section 4.4.5 gives the model for the relativistic acceleration of a near-Earth
spacecraft due to the oblateness of the Earth. This more-accurate model will be
used if the element of the PERB array for the Earth is set to 3 instead of 1 or 2.
The relativistic model of Section 4.4.5 may eventually be applied to other Solar-
System bodies in addition to the Earth. The relativistic acceleration of a near-
Earth spacecraft due to the Earth�s oblateness includes the calculation of the
Newtonian oblateness acceleration from the equations of this section.

The acceleration of the center of integration due to oblateness is calculated
when the center of integration is the Earth or the Moon. This model is given in
Section 4.4.6 and includes the effects of the oblateness of the Earth and the Moon.
The acceleration of the center of integration due to the oblateness of the Sun is
not calculated because the Sun cannot currently be modelled as an oblate body in
the ODP. If the center of integration is the planet or a satellite of one of the outer
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planet systems, the acceleration of the center of integration due to the oblateness
of the bodies of the planetary system is calculated from the above model as
described in Section 4.4.6.

The Newtonian acceleration of the spacecraft due to the oblateness of a
nearby celestial body can be calculated for any body in the Solar System except
the Sun. These bodies consist of the nine planets, the Moon, the satellites of the
outer planets Mars through Pluto, asteroids, and comets. Calculation of the
acceleration due to a satellite or the planet of one of the outer planet systems
requires the use of a satellite ephemeris for that system.

Calculation of the Newtonian acceleration of the spacecraft due to the
oblateness of a nearby body B requires the 3 x 3 body-fixed to space-fixed
rotation matrix TB for body B. If body B is the Earth (E), the body-fixed to space-
fixed transformation matrix TE for the Earth rotates from one of two possible
Earth-fixed coordinate systems selected by the user to the space-fixed coordinate
system of the planetary ephemeris (see Section 3.1.1). One of these Earth-fixed
coordinate systems is aligned with the mean pole, prime meridian, and equator
of 1903.0. The other Earth-fixed coordinate system is aligned with the true pole,
prime meridian, and equator of date. For the former case, the matrix TE includes
rotations through the X and Y angular coordinates of the true pole of date
relative to the mean pole of 1903.0. The formulation for calculating either version
of the transformation matrix TE for the Earth is given in Section 5.3. For every
other body B in the Solar System except the Earth, the transformation matrix TB

rotates from the body-fixed coordinate system aligned with the true pole, prime
meridian, and equator of date to the space-fixed coordinate system of the
planetary ephemeris. The formulation for calculating TB is given in Section 6.3. If
nutation terms are not included in calculating TB, the body-fixed coordinate
system is aligned with the mean pole, prime meridian, and equator of date.

Note that if the body-fixed coordinate system for the Earth is aligned with
the mean pole of 1903.0 instead of the true pole of date, the tesseral harmonic
coefficients C21 and S21 for the Earth must be non-zero to account for the offset
of the mean pole of date (assumed to be the mean figure axis) from the mean
pole of 1903.0. This is discussed further in Section 5.2.8.
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The Newtonian acceleration of the spacecraft due to the oblateness of a
nearby body B is obtained by rotating the space-fixed position vector of the
spacecraft to the body-fixed coordinate system, calculating the oblateness
acceleration in the body-fixed coordinate system, and then rotating the
acceleration of the spacecraft due to oblateness from the body-fixed coordinate
system to the space-fixed coordinate system. However, the oblateness
acceleration is not calculated in one of the body-fixed equatorial coordinate
systems described above, but in the body-fixed up-east-north coordinate system.
So, one additional rotation matrix is needed in addition to the matrix TB. The
following paragraph gives the equations for rotating between the space-fixed
coordinate system of the planetary ephemeris and the body-fixed up-east-north
coordinate system. The equations for calculating the Newtonian oblateness
acceleration in the body-fixed up-east-north coordinate system are given in
Moyer (1971).

Let

r = space-fixed position vector of the spacecraft relative to
the center of integration (COI) of the spacecraft
ephemeris. This vector is represented in the space-fixed
coordinate system of the planetary ephemeris.

    rB
COI = space-fixed position vector of the oblate body B relative

to the center of integration. This vector is obtained from
the planetary ephemeris as described in Section 3.1.2.1
and, if necessary, a satellite ephemeris as described in
Section 3.2.2.1.

Then, the space-fixed position vector of the spacecraft (S/C) relative to the oblate
body B is given by:

    r r rS/C
B

B
COI= − (4�46)

It is related to the corresponding body-fixed position vector rb of the spacecraft
by:
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      r rS/C
B

B b= T (4�47)

where the body B can be the Earth (E). The specific equatorial body-fixed
coordinate system that rb is referred to is the body-fixed coordinate system of
the body-fixed to space-fixed transformation matrix TB, as discussed above. The
inverse transformation of Eq. (4�47) is:

      r rb B
T

S/C
B= T (4�48)

where the superscript T indicates the transpose of the matrix.

Let   ′r  denote the position vector of the spacecraft relative to the oblate
body B in the body-fixed up-east-north rectangular coordinate system (x′y′z′).
The x′ axis is directed outward along the radius to the spacecraft, the y′ axis is
directed east, and the z′ axis is directed north. The transformation from
equatorial body-fixed coordinates to up-east-north body-fixed coordinates is
given by:

      ′ =r rR b (4�49)

where the 3 x 3 rotation matrix R is given by Eq. (161) of Moyer (1971). The
matrix R is a function of sines and cosines of the latitude φ and longitude λ of the
spacecraft measured in the body-fixed equatorial coordinate system. Given the
rectangular components of rb from Eq. (4�48), the sines and cosines of φ and λ
are given by Eqs. (165) to (168) of Moyer (1971).

Substituting Eq. (4�48) into (4�49) gives the transformation from the
space-fixed position vector of the spacecraft relative to the oblate body B to the
corresponding body-fixed position vector in the up-east-north coordinate
system:

      ′ = ≡r r rRT GB
T

S/C
B

S/C
B (4�50)

The inverse transformation is:
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      r r rS/C
B

B
T T= ′ ≡ ′T R G (4�51)

The following paragraph will describe the calculation of the acceleration of the
spacecraft due to the oblateness of body B in the body-fixed up-east-north
coordinate system. Given this acceleration,     úú ′r , the oblateness acceleration in the
space-fixed coordinate system of the planetary ephemeris is given by the second
derivative of Eq. (4�51), obtained holding the transformation matrix G fixed:

      úú úúr r= ′GT (4�52)

The rotation matrix G is not differentiated because the oblateness acceleration     úú ′r

is the inertial acceleration of the spacecraft with rectangular components along
the instantanteous positions of the axes of the body-fixed up-east-north
coordinate system.

Given the space-fixed position vector of the spacecraft relative to the
oblate body B given by Eq. (4�46), calculate the rectangular components of rb

from Eq. (4�48). Using these rectangular components, calculate the radius r from
the oblate body B to the spacecraft and the sines and cosines of the latitude φ and
longitude λ of the spacecraft measured in the body-fixed equatorial coordinate
system from Eqs. (165) to (168) of Moyer (1971). Given r, φ, and λ, calculate the
acceleration of the spacecraft due to the oblateness of body B in the body-fixed
up-east-north coordinate system from the sum of Eqs. (173) and (174) of Moyer
(1971). Eq. (173) gives the acceleration due to the zonal harmonic coefficients Jn,
and Eq. (174) gives the acceleration due to the tesseral harmonic coefficients Cnm

and Snm. These equations are a function of the Legendre polynomial Pn of degree
n in sin φ, the associated Legendre function   Pn

m  defined by Eq. (155) of Moyer
(1971), and the derivatives of both of these functions with respect to sin φ. These
four functions are functions of sin φ and cos φ and are computed recursively from
Eqs. (175) to (183) of Moyer (1971). Given the oblateness acceleration     úú ′r  in the
body-fixed up-east-north coordinate system, rotate it into the space-fixed
coordinate system of the planetary ephemeris using Eq. (4�52).
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Eqs. (173) and (174) of Moyer (1971) can be derived from the expressions
for the gravitational potential, which are given by Eqs. (154) to (159) of Moyer
(1971).

4.4.5 RELATIVISTIC ACCELERATION OF SPACECRAFT DUE TO THE

HARMONIC COEFFICIENTS OF THE EARTH

In the Solar-System barycentric space-time frame of reference, the Earth is
foreshortened in the direction of motion, which distorts the harmonic expansion
of its gravitational potential. In the geocentric frame, however, the shape of the
Earth and its gravitational potential are unaffected. The acceleration of a near-
Earth spacecraft in the Solar-System barycentric frame of reference due to the
oblateness of the Earth is calculated from the algorithm obtained from HRTW
(1990), which is detailed in the following paragraphs. This algorithm calculates
the oblateness acceleration in the local geocentric space-time frame of reference,
where the gravitational potential of the Earth is known, and utilizes the
relativistic coordinate transformations between the Solar-System barycentric and
local geocentric frames of reference developed in Section 4.3.

The trajectory of a near-Earth spacecraft in the Solar-System barycentric
space-time frame of reference is obtained by numerical integration with
coordinate time tBC of the barycentric frame as the independent variable. At each
integration step, the current Earth-centered space-fixed position vector of the
spacecraft rBC in the Solar-System barycentric space-time frame of reference,
calculated from Eq. (4�46), where B is the Earth E, is transformed to rGC in the
geocentric space-time frame of reference using Eq. (4�11), which is evaluated as
described after it. Then, using rGC  as the input, the Newtonian acceleration of the
near-Earth spacecraft     úúrGC  due to the harmonic coefficients of the Earth in the
geocentric frame of reference is calculated from the algorithm of Section 4.4.4. In
evaluating this algorithm, the gravitational constant of the Earth should be the
value in the local geocentric frame of reference calculated from the value in the
barycentric frame (obtained from the planetary ephemeris) using Eq. (4�25). The
acceleration     úúrGC  is then transformed to the acceleration     úúrBC in the barycentric
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frame using the second derivative of Eq. (4�10), which is derived in the next
paragraph.

In Eq. (4�10), rBC is a function of coordinate time tBC in the barycentric
frame, and rGC is a function of coordinate time tGC in the geocentric frame. First,
Eq. (4�10) will be differentiated with respect to tBC. In carrying out this
differentiation, VE and UE are considered to be constant, and     �L  is constant. It is
shown in HRTW (1990) that differentiation of VE and UE  yields (after
differentiating Eq. 4�10 twice) acceleration terms which are of order 10−14 or
smaller relative to the Newtonian acceleration of a near-Earth spacecraft. In
differentiating the right-hand side of Eq. (4�10),

      

d
dt

d
dt

dt
dt

r rGC

BC

GC

GC

GC

BC
= (4�53)

where dtGC/dtBC is given by Eq. (4�22). Differentiating Eq. (4�10) with respect to
tBC using Eqs. (4�53) and (4�22), and retaining terms to order 1/c2 gives:

      
ú

ú
ú úr

V r
r V r VBC

E E E
GC E GC E= −
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− −
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where       ú ú ú ú úr r r r r r rBC BC BC GC GC GC BC GC,  ,  and  or = = =d dt d dt  since terms of
order 1/c4 are ignored. Differentiating Eq. (4�54) with respect to tBC using
Eqs. (4�53) and (4�22), holding VE and UE fixed, and retaining terms to order
1/c2 gives:

      
úú � ú
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(4�55)

where       úú úúr r r rBC BC BC GC GC GC and = =d dt d dt2 2 2 2 . Since it is not necessary to
transform     ú úr rBC GC to  from the inverse of Eq. (4�54) in order to calculate     úúrGC  as
described in the preceding paragraph, the geocentric space-fixed velocity vector

    úr  of the near-Earth spacecraft can most conveniently be evaluated with     ú úr r= BC,
which is given by the derivative of Eq. (4�46), where B is the Earth E.
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Given the acceleration of a near-Earth spacecraft due to the oblateness of
the Earth calculated in the local geocentric space-time frame of reference as
described above, Eq. (4�55) transforms this acceleration to the corresponding
acceleration in the Solar-System barycentric space-time frame of reference. The
acceleration     úú úúr rBC GC−  obtained from Eq. (4�55), with γ  set equal to its general
relativistic value of unity, is Eq. (59) of HRTW (1990). The relativistic acceleration
of a near-Earth spacecraft due to the oblateness of the Earth minus the
corresponding Newtonian acceleration is of order 10−8 relative to the Newtonian
oblateness acceleration, which is of order 10−3 relative to the Newtonian
acceleration of the spacecraft due to the point-mass Earth. Hence, the relativistic
oblateness acceleration minus the Newtonian oblateness acceleration of a near-
Earth spacecraft is of order 10−11 relative to the Newtonian acceleration of the
spacecraft due to the Earth.

4.4.6 ACCELERATION OF THE CENTER OF INTEGRATION DUE TO

OBLATENESS

The acceleration of the center of integration due to oblateness is calculated
when the center of integration is the Earth or the Moon and accounts for the
oblateness of both of these bodies. The model for this acceleration is derived
below. If the center of integration is the planet or a satellite of one of the outer
planet systems, this model is used to calculate the acceleration of the center of
integration due to the oblateness of the bodies of the planetary system as
described at the end of this section.

The force of attraction between the Earth and the Moon consists of:

1. The force of attraction between the point-mass Earth and the point-
mass Moon.

2. The force of attraction between the oblate part of the Earth (i.e., the
Earth�s harmonic coefficients) and the point-mass Moon.

3. The force of attraction between the oblate part of the Moon (i.e., the
Moon�s harmonic coefficients) and the point-mass Earth.
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4. The force of attraction between the oblate part of the Earth and the
oblate part of the Moon.

The force 1 is accounted for in Section 4.4.1. The formulation of this section
accounts for the forces 2 and 3, but ignores the force 4, which is negligible.

Let

    úúrM E( ) = acceleration of point-mass Moon due to the oblateness of
the Earth

    úúrE M( ) = acceleration of point-mass Earth due to the oblateness of
the Moon

These accelerations, with rectangular components referred to the space-fixed
coordinate system of the planetary ephemeris, are computed from the
Newtonian formulation of Section 4.4.4. In calculating     úúrM E( ), the Moon is treated
as the spacecraft and Eq. (4�46) for the space-fixed position vector of the
spacecraft relative to the oblate body is replaced by the space-fixed geocentric
position vector of the Moon     rM

E  interpolated from the planetary ephemeris (see
Section 3.1.2.1). Similarly, in calculating     úúrE M( ), the Earth is treated as the
spacecraft, and Eq. (4�46) is replaced by     − r M

E .

Consider the force of attraction between the Earth and the Moon due to
the oblateness of the Earth, assuming the Moon to be a point mass. This force
produces     úúrM E( ) and:

    úúrE E( ) = acceleration of the Earth due to the force of attraction
between the oblate part of the Earth and the point-mass
Moon

Since these two accelerations are derived from equal and opposite forces,

    
úú úúr rE

M

E
ME E( ) = − ( )µ

µ
(4�56)
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where µE and µM are the gravitational constants of the Earth and Moon,
obtained from the planetary ephemeris. Similarly, consider the force of attraction
between the Earth and the Moon due to the oblateness of the Moon, assuming
the Earth to be a point mass. This force produces     úúrE M( ) and:

    úúrM M( ) = acceleration of the Moon due to the force of attraction
between the oblate part of the Moon and the point-mass
Earth

Since these two accelerations are derived from equal and opposite forces,

    
úú úúr rM

E

M
EM M( ) = − ( )µ

µ
(4�57)

The acceleration of the Earth due to the oblateness of the Earth attracting
the point-mass Moon and the oblateness of the Moon attracting the point-mass
Earth is given by:

    

úú úú úú

úú úú

r r r

r r

E E E

E
M

E
M

M E

M E

= ( ) + ( )

= ( ) − ( )µ
µ

(4�58)

Similarly, the acceleration of the Moon due to the oblateness of the Earth
attracting the point-mass Moon and the oblateness of the Moon attracting the
point-mass Earth is given by:
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E M
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(4�59)

The accelerations     úúrE and     úúrM are functions of the harmonic coefficients of the
Earth and the Moon. Also,     úúrE is proportional to µM and     úúrM is proportional to µE.
The ODP evaluates Eqs. (4�58) and (4�59) using the harmonic coefficients J2, C22,
and S22 only for the Earth and the Moon. The negative of Eqs. (4�58) and (4�59)
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are contributions to the acceleration of the spacecraft relative to the Earth and
the Moon, respectively.

The acceleration of the Earth due to its own oblateness in the presence of
the point-mass Moon is approximately 5 x 10−11 times the Newtonian
acceleration of a GPS (Global Positioning System) satellite (semi-major axis
a ≈ 26,560 km). This ratio is smaller for the TOPEX satellite. For a GPS satellite,
the acceleration of the satellite due to the oblateness of the Moon minus the
acceleration of the Earth due to the oblateness of the Moon is of order 10−13

relative to the Newtonian acceleration of the satellite.

The Earth (or the Moon) is also accelerated due to the oblateness of the
Earth (or the Moon) attracting the point-mass Sun. The acceleration of the Earth
due to its own oblateness in the presence of the point-mass Sun is about 6 x 10−14

times the Newtonian acceleration of a GPS satellite. In the ODP, Eqs. (4�58) and
(4�59) do not include the acceleration of the Earth and the Moon, respectively,
due to the interaction of the oblateness of these bodies with the point-mass Sun.

If the center of integration is the planet or a satellite of one of the outer
planet systems, the above model is used to calculate the acceleration of the center
of integration due to the oblateness of the bodies of the planetary system.

If the center of integration is satellite i of one of the outer planet systems,
the acceleration of satellite i due to the oblateness of the planet and due to the
oblateness of satellite i acting on the point mass of the planet is calculated from
Eq. (4�59), where M refers to satellite i and E refers to the planet. If the spacecraft
is within the harmonic sphere of satellite j, the acceleration of satellite i due to the
oblateness of satellite j and due to the oblateness of satellite i acting on the point
mass of satellite j is calculated from Eq. (4�59), where M refers to satellite i and E
refers to satellite j. Note that the masses of the satellites and the planet are
obtained as described in Section 3.2.2.1.

If the center of integration is the planet of one of the outer planet systems,
the acceleration of the planet due to the oblateness of satellite i and due to the
oblateness of the planet acting on the point mass of satellite i is calculated from
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Eq. (4�58), where E refers to the planet and M refers to satellite i. This calculation
is performed for each satellite of the planetary system and the resulting
accelerations of the planet are summed.

If the center of integration is the barycenter of one of the outer planet
systems, the acceleration of the barycenter due to the oblateness of the bodies of
the outer planet system is zero.

4.5 RELATIVISTIC EQUATIONS OF MOTION IN LOCAL
GEOCENTRIC FRAME OF REFERENCE

This section specifies the equations for calculating the acceleration of a
near-Earth spacecraft (typically, an Earth satellite) relative to the center of mass
of the Earth due to gravity only. This acceleration is calculated in the local
geocentric space-time frame of reference. Section 4.5.1 specifies the Newtonian
point-mass acceleration of a near-Earth spacecraft due to the Sun, the Moon, the
planets, asteroids, and comets minus the corresponding acceleration of the Earth.
In the local geocentric space-time frame of reference, the n-body point-mass
relativistic perturbative acceleration reduces to the acceleration obtained from
the 1-body Schwarzschild isotropic metric for the Earth (specified in Section 4.5.2)
plus the acceleration due to geodesic precession (specified in Section 4.5.3). The
Lense-Thirring relativistic acceleration of a near-Earth spacecraft due to the
rotation of the Earth is given in Section 4.5.4. Section 4.5.5 specifies the calculation
of the acceleration of a near-Earth spacecraft due to the oblateness of the Earth
and the Moon from the Newtonian model of Section 4.4.4. Section 4.5.6 specifies
the calculation of the acceleration of the Earth (which is subtracted from the
acceleration of the spacecraft) due to the oblateness of the Earth and the Moon
using the model of Section 4.4.6.

The time argument used to evaluate all acceleration models and
interpolate the spacecraft ephemeris is coordinate time tGC of the local geocentric
space-time frame of reference. It is also used to interpolate the planetary
ephemeris instead of the actual argument, which is coordinate time tBC of the
Solar-System barycentric frame of reference. The gravitational constant of the
Earth used in all models is the value calculated from the corresponding value in
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the Solar-System barycentric frame (obtained from the planetary ephemeris)
using Eq. (4�25).

All acceleration terms which are of order 10−12 or greater relative to the
Newtonian acceleration of the spacecraft due to the Earth are retained.

4.5.1 POINT-MASS NEWTONIAN ACCELERATION

The point-mass Newtonian acceleration of a near-Earth spacecraft relative
to the center of mass of the Earth in the local geocentric space-time frame of
reference is calculated the same as in the Solar-System barycentric space-time
frame of reference as described in Section 4.4.1 (when the center of integration in
the barycentric frame is the Earth). The point-mass Newtonian acceleration is the
acceleration of the near-Earth spacecraft calculated from Eq. (4�27) minus the
acceleration of the Earth calculated from the same equation. Terms are obtained
for the Sun, Mercury, Venus, the Earth, the Moon, the planetary systems Mars
through Pluto, asteroids, and comets. The Earth accelerates the spacecraft. The
remaining bodies accelerate the spacecraft relative to the Earth. If the element of
the PERB array for any of these bodies is 0, or an asteroid or a comet is not
included in the XBPERB array, the acceleration due to that body is not calculated.
The only difference from the calculations in the barycentric frame is that the
value of the gravitational constant of the Earth in the local geocentric frame is
calculated from the value in the barycentric frame (obtained from the planetary
ephemeris) using Eq. (4�25).

The independent variable for the equations of motion in the geocentric
frame of reference is coordinate time tGC of the geocentric frame. However, the
time argument for interpolating the planetary ephemeris for the position vectors
of the perturbing bodies is coordinate time tBC of the barycentric frame. It could
be obtained by adding tBC − tGC to tGC. From Section 4.3.3, the time difference
tBC − tGC is given by the right-hand side of Eq. (2�23) with the constant 32.184 s
deleted. For this application, the clock synchronization term, which is the third
dot product term, is evaluated with the geocentric space-fixed position vector of
the near-Earth spacecraft. The remaining terms of Eq. (2�23) are periodic terms.
The time difference tBC − tGC affects the position vectors of the perturbing bodies



SPACECRAFT  EPHEMERIS

4�41

and hence the acceleration of a near-Earth spacecraft relative to the Earth. For a
GPS satellite, this effect is of order 10−18 relative to the Newtonian acceleration of
the satellite due to the Earth, which is negligible. Therefore, in the local
geocentric space-time frame of reference, the planetary ephemeris can be
interpolated with coordinate time tGC of the geocentric frame in order to obtain
the position vectors of the perturbing bodies.

Lengths and times in the Solar-System barycentric space-time frame of
reference are smaller than those of the local geocentric space-time frame of
reference by the factor 1 +     �L  (i.e., the barycentric frame values are the geocentric
frame values divided by this factor), where     �L  is given by Eq. (4�17). From Eq.
(4�25), gravitational constants in the barycentric frame are also smaller than
those of the local geocentric frame by the same factor 1 +     �L . The point-mass
Newtonian acceleration of a near-Earth spacecraft relative to the Earth due to all
perturbing bodies except the Earth is computed from gravitational constants and
distances in the barycentric frame (both obtained from the planetary ephemeris).
This differential inverse radius-squared perturbative acceleration is high by the
factor 1 +     �L , and can be converted to the correct value in the local geocentric
frame of reference by multiplying it by 1 −     �L . For a GPS satellite, the resulting
correction is of order 10−13 relative to the Newtonian acceleration of the satellite
due to the Earth. It is doubtful if such a small effect could be seen in the data and
hence, the point-mass Newtonian acceleration of a near-Earth spacecraft relative
to the Earth due to all perturbing bodies except the Earth is not multiplied by the
correction factor 1 −     �L . The point-mass Newtonian acceleration of a near-Earth
spacecraft due to the Earth is computed from the gravitational constant of the
Earth in the geocentric frame calculated from Eq. (4�25) and the geocentric radius
to the spacecraft represented in the geocentric frame. Hence, this calculation is
correct in the geocentric frame.

4.5.2 POINT-MASS RELATIVISTIC PERTURBATIVE ACCELERATION

DUE TO THE EARTH

HRTW (1990) show that the n-body point-mass relativistic perturbative
acceleration in the Solar-System barycentric space-time frame of reference
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reduces to the relativistic perturbative acceleration obtained from the one-body
Schwarzschild isotropic metric for the Earth (specified in this section) plus the
acceleration due to geodesic precession (specified in the next section) in the local
geocentric space-time frame of reference.

The n-body point-mass metric tensor is given by Eqs. (2�1) to (2�12).
Simplifying these equations to the case of one massive body (the Earth) and a
massless particle (a near-Earth spacecraft) and substituting them into Eqs. (2�13)
to (2�15) for the interval ds gives:
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where the subscript i has been removed from the coordinates of the spacecraft.
The gravitational constant of the Earth µE in the local geocentric frame of
reference is calculated from the corresponding value in the Solar-System
barycentric frame of reference using Eq. (4�25). When β and γ are equal to their
general relativistic values of unity, this is the Schwarzschild isotropic one-body
point-mass metric, which has been expanded, retaining all terms to order 1/c2.
See Moyer (1971), Eq. (8). Dividing Eq. (4�60) by dt2 according to Eq. (4�30) and
denoting dx/dt as     úx , etc., gives the expression for the square of the Lagrangian
L. Differentiation of L2 gives expressions for     L L x L L x LL∂ ∂ ∂ ∂,  ,  and / ú ú . Also, the
second of these three expressions must be differentiated with respect to
coordinate time t of the local geocentric frame. Substituting all four of these
expressions into Eqs. (4�36) and (4�37) gives the point-mass equations of motion
due to the Earth in the local geocentric frame of reference. Subtracting the point-
mass Newtonian acceleration of a near-Earth spacecraft due to the Earth gives
the following expression for the point-mass relativistic perturbative acceleration
of a near-Earth spacecraft in the local geocentric space-time frame of reference:
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This same equation can be obtained by simplifying Eq. (4�26) to the case of one
perturbing body (the Earth) and removing the Newtonian term. In Eq. (4�61),

    r r,  ú = geocentric space-fixed position and velocity vectors of
near-Earth spacecraft

r = magnitude of r

    ús = magnitude of     úr

For an Earth satellite, the relativistic perturbative acceleration given by
Eq. (4�61) will always be less than 10−8 times the Newtonian acceleration of the
satellite. It will usually be of order 10−9 or smaller.

4.5.3 GEODESIC PRECESSION

Geodesic precession was introduced in Section 4.4.2. In the Solar-System
barycentric space-time frame of reference, the acceleration due to geodesic
precession is included in the point-mass relativistic perturbative acceleration
calculated from Eq. (4�26). However, in the local geocentric space-time frame of
reference, it must be calculated separately.

The precession rate of the north pole S of the orbit of an Earth satellite
about the normal to the ecliptic is given by Eq. (4�39), where Ω is the angular
velocity vector due to geodesic precession. From Will (1981), p. 209, Eq. (9.5), the
first term,
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where       r rE E and j jú  are space-fixed position and velocity vectors of the Earth
relative to body j, rEj is the magnitude of       rE

j , and µj is the gravitational constant
of body j. The second vector in the cross product is the gradient of the
gravitational potential U > 0 at the Earth due to body j. In Eq. (4�62), the only
body j which can produce an acceleration of a near-Earth spacecraft greater than



SECTION  4

4�44

order 10−14 relative to the Newtonian acceleration of the spacecraft is the Sun.
Setting Ω equal to the term due to the Sun (j = S) and evaluating that term gives:

      
ΩΩ =

( )
×( )µ γS

1
2

ES
E
S

E
S

+

c r2 3 r rú (4�63)

When γ = 1, this equation is equal to Eq. (43) of HRTW (1990). Eq. (4�63) in the
form of one term of Eq. (4�62) is given in Misner, Thorne, and Wheeler (1973),
Eq. (40.33b), term 3, and Eq. (40.34), line 3. When reading the references given in
this section, consider the geocentric orbit of the Earth satellite to be a gyroscope
in orbit about the Sun.

The inertial geocentric frame of reference is rotating with the angular
velocity Ω given by Eq. (4�63) relative to the Solar-System barycentric frame of
reference. However, the ODP uses a non-inertial geocentric frame of reference,
which is non-rotating relative to the barycentric frame of reference. When
formulating the equations of motion in the non-inertial geocentric frame of
reference, it must be considered to be rotating with the angular velocity − Ω.
Hence, in addition to the usual equations of motion in the non-rotating
geocentric frame of reference, we must add the centrifugal acceleration
− ω x ω x r and the Coriolis acceleration − 2ω x     úr , where the angular velocity ω of
the coordinate system relative to the inertial frame is − Ω. The ratio of the
centrifugal acceleration to the Newtonian acceleration increases with distance
from the Earth. For a GPS satellite, it is of order 10−21, which is negligible. The
Coriolis acceleration of a near-Earth spacecraft due to geodesic precession is:

    úú úr r= ×2ΩΩ (4�64)

where Ω is given by Eq. (4�63) and     úr  is the space-fixed geocentric velocity vector
of the near-Earth spacecraft. The ratio of this acceleration to the Newtonian
acceleration increases with distance from the Earth. For a GPS satellite, it is about
4 x 10−11. Eq. (4�64) is also given by the second term of Eq. (40) of HRTW (1990).
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The position and velocity vectors in Eq. (4�63) are interpolated from the
planetary ephemeris, and the additional velocity vector in Eq. (4�64) is
interpolated from the geocentric spacecraft ephemeris. The argument for each of
these interpolations is coordinate time tGC of the local geocentric space-time
frame of reference.

4.5.4 LENSE-THIRRING PRECESSION

The acceleration of a near-Earth spacecraft due to the Lense-Thirring
precession is calculated from the formulation of Section 4.4.3, specifically
Eqs. (4�43) and (4�45). In Eq. (4�43), the geocentric space-fixed position and
velocity vectors of the near-Earth spacecraft are interpolated from the geocentric
spacecraft ephemeris using coordinate time tGC in the local geocentric frame of
reference as the argument. In Eq. (4�45), TE is the rotation matrix from Earth-
fixed coordinates referred to the true pole, prime meridian, and equator of date
to the space-fixed coordinate system of the planetary ephemeris. It is calculated
from the formulation given in Section 5.3. The time argument for calculating TE

is coordinate time ET (coordinate time tBC of the Solar-System barycentric frame
or coordinate time tGC of the local geocentric frame). It will be seen in Section 5.3
that the internal time transformation from the argument ET to universal time
UT1 used in calculating TE  in the local geocentric frame of reference is different
from the time transformation used in calculating TE in the Solar-System
barycentric frame of reference. Furthermore, the time transformation used in
program PV in the barycentric frame is simpler than the one used in program
Regres in that frame. Because the acceleration due to the Lense-Thirring
precession is so small (see Section 4.4.3), the gravitational constant of the Earth in
Eq. (4�43) can be the value in the Solar-System barycentric frame or the
corresponding value in the local geocentric frame computed from Eq. (4�25).
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4.5.5 NEWTONIAN ACCELERATION OF NEAR-EARTH SPACECRAFT

DUE TO THE HARMONIC COEFFICIENTS OF THE EARTH AND

THE MOON

In the local geocentric space-time frame of reference, the acceleration of a
near-Earth spacecraft due to the oblateness of the Earth and the Moon is
calculated from the Newtonian model of Section 4.4.4. In Eq. (4�46), the space-
fixed position vector r of the spacecraft relative to the center of integration (the
Earth in the local geocentric frame of reference) is interpolated from the
geocentric spacecraft ephemeris as a function of coordinate time tGC of the local
geocentric frame of reference. The second term of Eq. (4�46) is interpolated from
the planetary ephemeris as a function of tGC. When the oblate body B is the Earth
E, the second term of Eq. (4�46) is zero. When the oblate body B is the Moon M,
the second term of Eq. (4�46) is the geocentric position vector of the Moon.

In calculating the acceleration of a near-Earth spacecraft due to the
oblateness of the Earth, the gravitational constant of the Earth must be the value
in the local geocentric frame of reference, calculated from the corresponding
value in the Solar-System barycentric frame using Eq. (4�25). In calculating the
acceleration due to the oblateness of the Moon, the gravitational constant of the
Moon can be the value in the Solar-System barycentric frame of reference,
obtained from the planetary ephemeris. The same value must be used in the next
section in calculating the acceleration of the Earth due to the oblateness of the
Earth and the Moon.

In Eqs. (4�48), (4�51), and (4�52), the Earth-fixed to space-fixed
transformation matrix TE and the Moon-fixed to space-fixed transformation
matrix TM are evaluated from the formulations given in Sections 5.3 and 6.3,
respectively, as a function of coordinate time tGC of the local geocentric frame of
reference. The correct argument for evaluating TE and TM is coordinate time tBC

of the Solar-System barycentric frame of reference. Approximating it with tGC

produces errors in the calculated oblateness accelerations which are of order
10−16 relative to the Newtonian acceleration of the spacecraft due to the Earth.
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4.5.6 ACCELERATION OF THE CENTER OF INTEGRATION DUE TO

OBLATENESS

In the local geocentric frame of reference, the center of integration is the
Earth. The acceleration of the Earth due to oblateness accounts for the oblateness
of the Earth and the Moon. This acceleration is calculated from the formulation of
Section 4.4.6, specifically Eq. (4�58). In this equation, the acceleration of the point-
mass Earth due to the oblateness of the Moon and the acceleration of the point-
mass Moon due to the oblateness of the Earth are calculated from the Newtonian
model of Section 4.4.4. Both of these calculations require the geocentric space-
fixed position vector of the Moon. To sufficient accuracy, it can be interpolated
from the planetary ephemeris using coordinate time tGC of the local geocentric
frame of reference as the argument. Also, to sufficient accuracy, tGC can be used
as the argument for calculating the body-fixed to space-fixed transformation
matrix TE for the Earth and TM for the Moon.

In Eq. (4�58), the acceleration of the Earth due to the oblateness of the
Earth and the Moon is proportional to the gravitational constant of the Moon. It
can be the value in the Solar-System barycentric frame of reference, which is the
same value used in the preceding section to calculate the acceleration of a near-
Earth spacecraft due to the oblateness of the Moon.

The negative of the acceleration of the Earth due to the oblateness of the
Earth and the Moon is a contribution to the acceleration of a near-Earth
spacecraft relative to the Earth in the local geocentric frame of reference.


	SECTION 4 SPACECRAFT EPHEMERIS AND PARTIALS FILE
	4.1 INTRODUCTION
	4.2 GENERAL DESCRIPTION OF PROGRAM PV
	4.3 TRANSFORMATIONS BETWEEN COORDINATES OF THE LOCAL GEOCENTRIC FRAME OF REFERENCE AND THE SOLAR-SYSTEM BARYCENTRIC FRAME OF REFERENCE
	4.3.1 POSITION COORDINATES
	4.3.1.1 Derivation of Transformation
	4.3.1.2 Expressions for Scale Factors

	4.3.2 DIFFERENTIAL EQUATION FOR TIME COORDINATES
	4.3.3 TIME COORDINATES
	4.3.4 GRAVITATIONAL CONSTANTS

	4.4 RELATIVISTIC EQUATIONS OF MOTION IN SOLAR-SYSTEM BARYCENTRIC FRAME OF REFERENCE
	4.4.1 POINT-MASS NEWTONIAN AND RELATIVISTIC PERTURBATIVE ACCELERATIONS
	4.4.2 GEODESIC PRECESSION
	4.4.3 LENSE-THIRRING PRECESSION
	4.4.4 NEWTONIAN ACCELERATION OF SPACECRAFT DUE TO THE HARMONIC COEFFICIENTS OF A CELESTIAL BODY
	4.4.5 RELATIVISTIC ACCELERATION OF SPACECRAFT DUE TO THE HARMONIC COEFFICIENTS OF THE EARTH
	4.4.6 ACCELERATION OF THE CENTER OF INTEGRATION DUE TO OBLATENESS

	4.5 RELATIVISTIC EQUATIONS OF MOTION IN LOCAL GEOCENTRIC FRAME OF REFERENCE
	4.5.1 POINT-MASS NEWTONIAN ACCELERATION
	4.5.2 POINT-MASS RELATIVISTIC PERTURBATIVE ACCELERATION DUE TO THE EARTH
	4.5.3 GEODESIC PRECESSION
	4.5.4 LENSE-THIRRING PRECESSION
	4.5.5 NEWTONIAN ACCELERATION OF NEAR-EARTH SPACECRAFT DUE TO THE HARMONIC COEFFICIENTS OF THE EARTH AND THE MOON
	4.5.6 ACCELERATION OF THE CENTER OF INTEGRATION DUE TO OBLATENESS



